

CASE STUDY

<u>DIVISION</u> BIOFOULING CONTROL

<u>PROJECT NAME</u> PEGAGA

<u>OWNER</u> MUBADALA / SAPURA

ABOUT THIS PROJECT:

ELECTROCHLORINATOR

PROJECT FACTS

The project scope consisted of a 1 x 100% seawater electrochlorination unit to generate hypochlorite for biofouling control in the platform's seawater cooling system. The package utilizes concentric tubular cells (tube cells) with a capacity of 11kg/hr hypochlorite production. The system includes a cell cleaning system to control scale formation in the tube cells. Piping on the system is a combination of FRP on the inlet lines for added pressure capability and CPVC for the hypochlorite lines.

CHALLENGE

For this project, the client wanted a very cost-effective solution that could meet the project specifications and remain within budget.

SOLUTION

H2O's engineering department designed a package that met all client requirements and used a 1 X 100% system with adequate sparing to meet the client's percentage uptime requirements. We also were able to save on costs by offering a hybrid piping system with FRP on the inlet lines where pressure ratings needed to be higher and CPVC piping and valves, which are fit for purpose and very cost-effective, on the hypochlorite and cleaning lines. To increase long-term reliability, the oil-cooled transformer rectifier was supplied with a 316L SS tank to prevent corrosion.

RESULT

The package was delivered to the client's shipyard in Malaysia. The client was happy with the quality of equipment provided, and H2O was able to supply a system that met the client's need for a durable long-lasting package that met their budget constraints.